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Abstract

High-throughput screening (HTS) using NMR spectroscopy has become a common component of the drug
discovery effort and is widely used throughout the pharmaceutical industry. NMR provides additional
information about the nature of small molecule-protein interactions compared to traditional HTS methods.
In order to achieve comparable efficiency, small molecules are often screened as mixtures in NMR-based
assays. Nevertheless, an analysis of the efficiency of mixtures and a corresponding determination of the
optimum mixture size (OMS) that minimizes the amount of material and instrumentation time required for
an NMR screen has been lacking. A model for calculating OMS based on the application of the hyper-
geometric distribution function to determine the probability of a ‘hit’ for various mixture sizes and hit rates
is presented. An alternative method for the deconvolution of large screening mixtures is also discussed. These
methods have been applied in a high-throughput NMR screening assay using a small, directed library.

Introduction

Traditional methods of screening targets against
chemical libraries include cell-based assays, sur-
rogate systems, and systems to measure nucleic
acid-protein interactions and receptor-ligand
interactions (Fernandes, 1998). Libraries com-
prising hundreds of thousands of compounds can
be screened in a short time period, where a par-
ticular robotic system has demonstrated a screen-
ing rate of 1,000 microtitre plates per 24 hours
(Wallace, 1998). Although an efficient means to
screen very large chemical libraries for activity
against a specific protein target, these traditional
techniques generally provide no indication of the
mechanism of inhibition or verification that a
binding interaction between the target and ligand
have actually occurred.

High-throughput screening (HTS) using nuclear
magnetic resonance (NMR) spectroscopy has be-
come a common component of the drug discovery
effort and is widely used throughout the pharma-
ceutical industry because of the unique ability of
NMR to provide direct evidence of a specific
binding interaction between a potential chemical
lead and the protein of interest (Klaus and Senn,
2003; Huth and Sun, 2002; Sem and Pellecchia,
2001; Roberts, 2000; Moore, 1999b; Moore, 1999a;
Peng et al., 2001). Additionally, NMRmay be used
to evaluate the physical properties of a chemical
lead, measure KD’s (Fielding, 2003) identify ligand
binding sites (Roberts, 2000), and determine a co-
structure (Clore and Gronenborn, 1994; Cooke,
1997; Kay, 1997; Roberts, 2000). A diverse number
of NMR screening approaches have been devel-
oped, which include SAR by NMR (Shuker et al.,
1996; Hajduk et al., 1997a; Hajduk et al., 1997c;
Hajduk et al., 1999b; Johnson et al., 2003),
SHAPES (Moore et al., 2004; Lepre et al., 2002;

*To whom correspondence should be addressed. E-mail:
rpowers3@unl.edu

Journal of Biomolecular NMR (2005) 31: 243–258 � Springer 2005
DOI 10.1007/s10858-005-0948-4



Fejzo et al., 1999), and MS/NMR (Moy et al.,
2001). NMR spectroscopy is a relatively insensitive
technique requiring higher amounts of material and
acquisition time compared to standard methods
used in traditional HTS assays. Thus, a funda-
mental issue with NMR screens is a need to opti-
mize the efficiency of sample throughput by
achieving a balance between information content
and resource utilization. As a result, NMR-based
assays utilize chemical libraries that are signifi-
cantly smaller in size compared to the hundreds of
thousands to millions of compounds typically
screened in an HTS assay.

An approach used to address the fundamen-
tally lower throughput of NMR has been the
development of small, directed compound libraries
that are more amenable to NMR-based screens
(Huth and Sun, 2002; Jacoby et al., 2003; Baurin
et al., 2004; Villar et al., 2004). The SHAPES
library is a typical example of the fragment based
approach to NMR screening, where the library
consists of a small, structurally diverse set of water
soluble compounds that correspond to fragments
or molecular frameworks of known drugs (Lin
et al., 1997; Fejzo et al., 1999; Johnson et al., 2003;
Lepre et al., 2002; Moore et al., 2004). A compa-
rable approach to reduce the size of screening
libraries is to use NMR-based assays as a sec-
ondary screen to validate hits from HTS assays. In
this manner, the HTS assays reduce a large cor-
porate library to a small, focused list composed of
a few hundred to a few thousands compounds that
is more applicable to an NMR screen (Hajduk and
Burns, 2002; Jahnke and Widmer, 2004).

Since chemical libraries can still number in the
thousands of compounds, even for directed
libraries, mixtures of small molecules are often
screened against a target to minimize resource
utilization while increasing throughput (Jacoby
et al., 2003; Chen and Shapiro, 1999; Lin et al.,
1997; Meyer et al., 1997). Screening mixtures of 5
to 100 compounds have been described where it
may be feasible for an NMR assay to screen up-
wards of hundreds of thousands of compounds
(Devlin et al., 1996; Glick et al., 2003; Hann et al.,
1999; Jacoby et al., 2003; Pratt Steven et al., 2004;
Hajduk et al., 1999a). Thus, the use of mixtures
makes an NMR assay readily amenable for
screening smaller, directed libraries with the
potential to screen larger, random libraries com-
parable to standard HTS assays.

There are some potential issues associated with
the application of mixtures that impacts their
wide-spread use in traditional HTS (Schriemer and
Hindsgaul, 1998). A major concern is the obser-
vation that mixtures increases the inherent ‘noise’
of an HTS assay by either increasing the occur-
rence of false positives or false negatives (Glick
et al., 2004; Pratt Steven et al., 2004). Another
practical concern is the proper composition of the
mixtures used for screening. Factors such as sol-
ubility, total organic concentration, structural
diversity and compound reactivity may potentially
limit the utility of mixtures in a screening endeavor
(Brown et al., 2000; Brown and Martin, 1997;
Schriemer and Hindsgaul, 1998; Hann et al.,
1999). It is particularly challenging to design
appropriate mixtures that adhere to these needs,
especially for larger library and mixture sizes
(Brown and Martin, 1997; Glick et al., 2003).
Additionally, improvements in miniaturization
and automation that continually improves the
throughput of HTS assays diminishes any
perceived advantage of mixtures (Dove and
Marshall, 1999; Smith, 2002).

Despite these limitations, compound mixtures
are routinely used in NMR assays because of the
significant advantage that is achieved in increasing
throughput. In general, mixture sizes in NMR
screens appear to be chosen rather arbitrarily,
where the simple application of mixtures achieves
the main goal of improved throughput. No sig-
nificant consideration has been given to determine
an optimal mixture size (OMS) for an efficient
implementation of an NMR-based assay to mini-
mize resources. Deconvolutions of mixtures to
identify the active compound results in an increase
in the total number of NMR experiments required
to screen the entire library. The impact of the
deconvolution step may overwhelm any
advantages in efficiency gained by screening a
specific mixture size compared to alternatives.
Thus, the size of the mixture chosen for a partic-
ular screen directly determines the total number of
NMR experiments that are required and estab-
lishes the efficiency of the assay. An increase in
mixture size results in a proportional decrease in
the number of primary NMR experiments. But,
basic probability indicates that the likelihood of
finding a hit and the need to deconvolute a mixture
will also scale with an increase in mixture size.
Furthermore, the total number of deconvolution
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experiments is a direct product of the size of the
mixture. Thus, determining the OMS requires
finding a balance between these two opposing
trends: a decrease in primary experiments and an
increase in deconvolution experiments as a func-
tion of mixture size. We describe a model based on
the hypergeometric distribution function (Feller,
1968; Spiegel, 1992) that determines the optimum
mixture size and corresponding efficiency of an
NMR-based assay for a range of ‘hit’ rates.

Materials and methods

Statistical analysis

Because the hit rate is low within a random com-
pound library, it is usually expected that only a
small percentage of the screened mixtures will
contain even a single hit. Random libraries usually
have hit rates on the order of 0.1–0.5% (Dove and
Marshall, 1999), but focused chemical libraries,
such as SHAPES used for NMR assays, may
exhibit significantly higher hit rates of 0.7–20% or
higher (Lepre et al., 2002; Jahnke and Widmer,
2004). The hit rate, thus, plays a significant factor
in determining the optimum size of a mixture.

An initial reasonable expectation would be that
the number of NMR experiments collected for a
given library size will continue to decrease, albeit
slower, with increasing mixture size, as long as
larger mixtures are practically attainable (Hann
et al., 1999; Brown and Martin, 1997; Glick
et al., 2003; Brown et al., 2000; Schriemer and
Hindsgaul, 1998). Although it may seem that a
direct relationship exists between mixture size and
the number of experiments needed, we propose
instead that identifying the OMS is best described
through the use of a hypergeometric distribution
function (Feller, 1968; Spiegel, 1992). The ‘urn
problem’ is a classic illustration of the application
of the hypergeometric distribution function. The
urn problem involves sequentially selecting balls
from an urn containing a fixed number of two
different colored balls. The function describes the
probability of pulling out one color verses another
for a given sample size. This is perfectly analogous
to the issue of defining the optimal mixture size
where the probability of a mixture containing a hit
is dependent on the distribution of inactive com-
pounds (color one) and hits (color two) in a

library. Again, this process is identical to creating
a set of mixtures from a defined compound library
(N) by randomly selecting n compounds from the
library until N/n mixtures are generated and all the
compounds in the library have been used. A hit is
never guaranteed or limited in number in a mix-
ture, and the hypergeometric distribution function
accurately describes the distribution of hits as
completely random in nature. The equation for the
hypergeometric distribution function is defined as:

PðX ¼ xÞ ¼ hðx : n;M;NÞ ¼

M
x

� �
N�M
n� x

� �

N
n

� �

ð1Þ

where P is the probability of a mixture containing
at least one hit, x is the number of hits present in a
mixture, n is the number of compounds in
the mixture, M is the number of hits present in the
library, and N is the total population of the
library.

The Winstats software program was used to
determine the probability of a hit for a given
sample (mixture) size and hit rate (12). A hypo-
thetical chemical library of 200,000 compounds
was used for all the simulations, where the ob-
served trends scale proportionally with the size of
the library. In the absence of deconvolution, the
required number of experiments scales simply by
N/n (Figure 1). When deconvolution is required,
the probability of one or more hits being present in
a mixture needs to be considered to determine the
total number of experiments (T):

T ¼ N

n

� �
þ Nð Þ Pð Þ ð2Þ

The additional experiments attributed to decon-
volution is simply determined by the number of
mixtures containing one or more hits and the size
of the mixture. This in turn is defined by the
probability of a mixture having one or more active
compounds times the total number of mixtures
(N/n) and the total number of compounds per
mixture (n). This simply reduces to (N)(P). After
we completed our study, a similar analysis of
preferred mixture size in the context of designing a
combinatorial chemical library came to our
attention (Teixido et al., 2000). Teixido et. al
(2000) uses a simple and fundamentally flawed
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assumption especially in the context of NMR-
based screens. Their analysis is based on the
assumption that the active compounds are uni-
formly distributed throughout the mixtures where

a mixture will contain either zero or one active
compound. This is a reasonable assumption for
very low hit rates and small mixture sizes where
the hypergeometric distribution function indicates

Figure 1. The OMS as a function of mixture size with no deconvolutions( ) and strategic pooling( ) are plotted in all graphs.
The OMS as a function of mixture size requiring deconvolution are plotted at different hit rates: (a) 0.20% , 0.25% ,
0.30% ,0.40% , 0.50% ; (b) 1.0% , 1.5% , 2.0% , 3.5% , and 5.0% and; (c) 10% , 12.5% , 15% ,
20% . (d-f) Expanded view of graphs from a-c, respectfully. The OMS for hit rates between 0.20–0.50% is 5–11. The OMS for hit
rates between 1.0–5.0% is15–20. For hit rates >10%, the graphs (c, f) clearly shows that using mixture sizes for these larger hit rates can
lead to much higher total number of experiments. For the larger mixture sizes proposed at these hit rates, using the singleton method is
preferred as each mixture will have at least 1 hit with P = 1. For these cases, all of the mixtures would have to be deconvoluted leading
to a great number of total experiments compared to screening without mixtures.
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a vanishingly small probability of a mixture con-
taining more than one hit, but this analysis pro-
vides erroneous results as both hit rate and
mixture size rise. Figure 2 clearly illustrates the
impact of hit rate on the distribution of hits per
mixture. There is a point where the probability
shifts from a majority of mixtures lacking an active
compound to the situation where the most com-
mon event is for a mixture to contain two, three or
more active compounds. The application of the
hypergeometric distribution function clearly indi-
cates that an increasing hit rate continually shifts
the ratio of the number of hits per mixture to
values greater than one.

For a given mixture size, it is always more
efficient to screen a library by avoiding deconvo-
lution, but it also suggests that there is a situation
where it is more efficient to screen a larger mixture
size requiring deconvolution compared to a smal-
ler mixture size that avoids deconvolution. Thus,
using an OMS (n1) for a given hit rate is more
efficient than using a smaller mixture size (n2) that
avoids deconvolution if the following condition
holds:

1

n1
>

1

n2
þ P ð3Þ

This condition holds for the typical 0.1–0.5% hit
rates for random libraries but diminishes quickly
with increasing hit rates associated with directed

or focused libraries. Figure 3 shows how the OMS
decreases with an increasing hit rate.

An alternative method to the single deconvo-
lution step described above, is a bucket-sort
approach that increases the efficiency of screening
larger mixtures (>20) by diminishing the impact
of deconvolution. The bucket-sort method subdi-
vides large mixtures (n1) with identified hits into a
second set of smaller mixtures (n2). As before, the
hypergeometric distribution function determines
the probability of identifying a hit in each of the
mixtures sizes (P1, P2). Again, the total number of
deconvolution experiments is based on the number
of mixtures containing a hit and the size of each
mixture. The total number of experiments using
the bucket- sort method is:

T ¼ N

n1

� �
þ N

n2

� �
P1ð Þ þ ðNÞðP1ÞðP2Þ ð4Þ

The difference in the standard deconvolution
method and the bucket-sort is clearly illustrated in
Figure 4. For lower hit rates, the total number of
experiments needed for the bucket sort method is
significantly smaller. However, it is clear that as the
hit rate increases, the bucket sort method begins to
approach the same results as the standard method.

It is important to note that the hit rate (HR2)
for the second set of mixtures in the bucket sort
approach is not equivalent to the hit rate (HR1) for
the library. The bucket-sort approach effectively

Figure 2. A probability distribution for different hit rates for mixtures of 20 compounds. The probability of having 0–10 hits per
mixtures ultimately depends on the hit rate: 1% ; 2% ; 5% ; 10% ; 20% . For the larger hit rates, there is a higher
probability of having more than 1 hit per mixture.
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concentrates the number of hits in the second set
of mixtures. This occurs because the total number
of hits remains constant but the total number of
compounds that is screened in the second set of
mixtures is decreased since mixtures devoid of a hit
are discarded. The two hit rates are related by the
probability of identifying at least one hit in the
initial large mixture size:

HR2 ¼
HR1

P1
ð5Þ

HR2 can then be used to determine a probability
for identifying a hit in the second smaller set of
mixtures and a corresponding OMS for the second
screen in the same way as before. Of course, there
is a finite limitation to the utility of the bucket-sort
approach. For a given library size, as hit rate and
size of the large mixture increase, the probability
of identifying at least one hit in every mixture
rapidly approaches unity. Figure 5 illustrates the
results of the OMS analysis as a function of mix-
ture size for the second deconvolution step in the
bucket-sort method.

Figure 4. The difference between standard deconvolutions with mixtures of 100 ( ) and the bucket sort approach with mixtures of
100 and 10 ( ) and 100 and 5 ( ). As the hit rate increases, the total number of experiments for the bucket sort approaches the
results for the standard deconvolution method and may exceed the standard deconvolution method if mixture sizes are not optimized.

Figure 3. A plot of optimal mixture size (OMS) as a function of hit rate (HR).
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Compound library

A directed small compound library composed of
approximately 300 compounds is used for theNMR
screen. The compounds are structural diverse and
soluble to 100 lM in an aqueous buffer. Based on
the described OMS analysis and expected high hit
rate (0.7–20%) for a directed chemical library,
mixtures were designed to avoid a necessary
deconvolution step. Avoiding deconvolution in an
NMR screen requires identifying combinations of
compounds that yield at least one unique NMR
resonance per compound. A high resolution was
desired so that a binding event could be absolutely
assigned to a specific compound in the mixture by
observing line-width changes in the 1H NMR
spectrum upon addition of the protein. Because the
1H spectral window is fairly narrow, only mixture
sizes of 3–4 compounds were readily obtained that
fit this criteria. Screening this directed compound
library by NMR has yielded a hit rate of 7.3%,
which is consistent with the higher hit rates
observed with other directed (0.7–20%) libraries. It
is reasonable to expect that the absolute value for
the hit rate will vary depending on the particular
protein that is screened.

Special care was taken when designing the
mixtures to minimize the possibility of chemical
interactions between the compounds within the
mixture. To ensure that no chemical reactions or
interactions had taken place, reference NMR
spectra were acquired for each individual mixture
where chemical shifts and peak intensities were

compared between the NMR spectra of the mix-
tures and the corresponding individual com-
pounds. In all cases, the NMR spectrum for each
compound in a mixture were essentially identical
to its individual NMR spectrum. Additionally,
each mixture is composed of structurally unique
compounds to decrease the likelihood that multi-
ple active compounds are present in the mixture.

NMR sample conditions

A 20 mM stock solution in D2O or d-DMSO for
each compound in the library has been generated
and is stored at )80 �C. A reference 1H NMR
spectrum of each compound was collected to
ensure reasonable solubility and stability. Addi-
tionally, reference spectra confirmed consistency
of the NMR spectra for each compound in its
corresponding mixture eliminating reactivity or
interactions between the mixture compounds. The
NMR samples contained 100 lM of compound,
5% DMSO and 20 mM of d-Bis Tris buffer at
pH 7.0. The NMR spectra were collected on a
Bruker 500 MHz Avance spectrometer equipped
with a triple-resonance, Z-axis gradient cryoprobe
and a BACS-120 sample changer. 1H NMR spec-
tra were collected with solvent presaturation and a
total acquisition time of 12 minutes, where
S/N ‡ 4 was required to keep the compound in the
chemical library. Figure 6 is an example of the
quality of the NMR data and the typical com-
pounds comprising a mixture. Given these exper-
imental conditions for the NMR screen, a

Figure 5. A plot of OMS as a function of mixture size for the second screening step using the bucket-sort method. (a) hit rates of:
10% ; 12% ; 15% ; and 20 . (b) hit rates (HR2) of: 1% ; 1.5% ; 2% ; 3.5% ; 5% . OMS ranges from 6–12
for HR2 between 1–5%. At higher hit rates, OMS is approximately 1–3 compounds. For consistency, each mixture that has a hit for the
second screen was calculated assuming deconvolution, but this may not be necessary for smaller mixture sizes.
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Figure 6. An example of a typical NMR spectrum for a mixture of 4 compounds from our screening library. Each NMR resonance
has been assigned to one of the compounds in the mixture, d-DMSO (2.52 ppm) or TMSP (0.0 ppm). The compound names are as
follows: a, Thymidine 5¢-triphosphate sodium salt (TTP); b, Biotin (vitamin H); c, Acetylsalicylic acid; d, O-(Carboxymethyl)hydrox-
ylamine.

Figure 7. Example of a positive binding event from the 1D NMR line-broadening screen. The expanded aromatic region of Mixture
1004 (a) without and (b) with SAV1430 illustrating the induced change in linewidths. Only the NMR resonances assigned to
acetylsalicylic acid broaden in the presence of SAV1430. The NMR resonances for the remaining compounds in the mixture are
unchanged. The additional broad resonances in spectrum B are from the protein.
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conservative estimate for the upper-limit for an
observable KD is �500 lM–1 mM. This is based
on a conservative estimate that a 10–20% change
in the line-width of NMR spectra is readily
observable with a 15–25 Hz line-width for a
modest size protein (15–25 kDa). The KD upper-
limit will increase for larger molecular-weight
proteins since a larger line-width change will occur
for a given fraction bound ligand.

After a reference NMR spectrum was collected
for eachmixture of compounds, 25 lMof SAV1430
from Staphlococcus aureuswas added to eachNMR
tube and a second 1D 1H spectrum of the mixtures
was collected for comparison. A positive binding
event is identified by an observed line-width change
for an NMR resonance attributed to a specific
compound in the mixture (Figure 7).

Discussion

Identifying the optimal mixture size (OMS)

Pharmaceutical companies have large libraries of
compounds that range from the hundreds of
thousands to millions of compounds, which have
evolved from decades worth of synthetic efforts,
from acquisition or more recently from combina-
torial chemistry approaches (Armstrong, 1999;
Gonzalez and Negulescu, 1998; Oldenburg, 1998;
Fernandes, 1998; Kenny et al., 1998; Silverman
et al., 1998). The inherently low-sensitivity and
long acquisition times necessary to acquire even
the simplest NMR experiment limits the feasibility
of screening a corporate library using a one com-
pound per sample approach. Thus, the advantage
of mixtures is both apparent and paramount to the
successful application of NMR in high-throughput
assays that require screening thousands of com-
pounds in a reasonable time-frame, where an order
of magnitude improvement in throughput may be
achieved compared to screening singletons (Meyer
et al., 1997; Lin et al., 1997; Jacoby et al., 2003;
Hajduk et al., 1999a; Dalvit et al., 2003; Chen and
Shapiro, 1999). There are multiple acceptable
paradigms that contribute to the proper design of
individual mixtures in a library. The major con-
cerns are: (i) minimizing reactivity and interactions
of compounds, (ii) maximizing structural diversity,
(iii) maximizing solubility and (iv) maintaining
consistent physical properties (pH, ionic strength,

total organic concentration) (Schriemer and
Hindsgaul, 1998; Hann et al., 1999; Jacoby et al.,
2003; Brown and Martin, 1997; Gorse and Lah-
ana, 2000; Brown et al., 2000). One desirable im-
pact of the nature of corporate libraries and these
design criteria is the result that mixtures can be
considered generally random in composition.
Random mixture composition implies that the
likelihood of achieving a hit against a target in a
particular mixture is also random and dependent
on the total number of ‘active’ compounds in the
entirety of the library.

The efficiency of screening does not simply
scale with the size of mixtures but depends on the
design of the NMR experiments and the nature of
mixtures being used to screen the chemical library.
The efficiency of an NMR screen can be measured
by the total number of NMR experiments (T) that
are required to screen the entire library and iden-
tify all the ‘active’ compounds. If deconvolution of
the hits is unnecessary, than efficiency will simply
scale as a function of the mixture size (N/n)
(Figure 1). A more typical situation is for an NMR
screen to require the deconvolution of a mixture to
identify the hit(s). The impact of deconvolution on
the total number of NMR experiments or the
efficiency of the screen is simply determined from
the number of mixtures with an identified hit times
the size of the mixtures (Equation. 2).

Thus, the true test of the efficient use of mix-
tures is dependant on the probability of a hit
occurring in any given mixture. As the probability
of a hit being present in a mixture increases, the
number of deconvolution experiments will also
increase while decreasing the efficiency of the
mixture size. The probability of a hit being present
in a mixture will increase with both the size of the
mixture (more chances to find a hit) and the hit
rate (more number of hits) (Figure 2). This sce-
nario is perfectly analogous to the classic ‘urn
problem’ where the hypergeometric distribution
function (Equation. 1) can be applied to determine
the probability (P) that one or more ‘hits’ will be
present in any given mixture based on the size of
the mixture and the ‘hit’ rate. (Feller, 1968; Spie-
gel, 1992). The total number of NMR experiments
required to screen a compound library can then be
determined from the probability of finding a hit
within a given mixture (Equation 2). As illustrated
in Figure 1, plotting mixture sizes as a function of
the total number of NMR experiments needed to
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screen the entire library results in a minimum that
identifies the optimal mixture size (OMS). The
mixture size that corresponds to the minimum is
directly dependent on the hit rate. OMS ranges
between 5–20 compounds per mixture over a hit
rate of 5% to 0.2%, where OMS decreases as the
hit rate increases (Figure 3). The absolute hit rate
is an unknown quantity prior to executing a
screen, but an expected value can be predicted
based on the composition of the screening library.
For directed libraries that are routinely used in
NMR higher hit rates are anticipated (0.7–20% or
higher) (Lepre et al., 2002; Jahnke and Widmer,
2004). Our analysis of OMS would predict that a
mixture size of 5 compounds would be a reason-
able choice for the high hit rates predicted for
NMR screens of directed compound libraries.

For smaller mixture sizes where the probability
of a hit in a mixture is diminished the trend
approximates N/n. Initially increasing mixture size
improves the efficiency of the screen, but as the
mixture size continues to increase deconvolution
becomes a significant component of the total
number of experiments. As a result, there is a point
where a smaller mixture size is more efficient at
minimizing the total number of experiments
compared to larger mixtures because of the large
negative impact of deconvolution. Consider a
typical hit rate of 0.25% and a theoretical library
comprising 200,000 compounds, for a mixture size
of 5 compounds a total of 42,480 experiments are
predicted. This total actually increases to 46,300
experiments for a mixture size of 100 because of
the impact of deconvolution.

Increasing hit rate has a negative impact on the
absolute efficiency of an NMR-based screen using
mixtures. This arises because hit rate only con-
tributes to the total number of necessary decon-
volution steps resulting in a proportional increase
in the total number of experiments required to
screen the library regardless of mixture size. An
increase in hit rate also results in a shift to a lower
mixture size for the identified OMS. As hit rate
rises, the probability of an active compound being
present in a mixture also increases (Figure 2). This
results in a corresponding increase in the number
of deconvolution steps and a subsequent decrease
in the efficiency of the mixture size. Conversely, a
decrease in the mixture size diminishes the prob-
ability of identifying a hit since fewer chances are
available for ‘pulling’ an active compound out of

the library. Thus, a smaller OMS compensates for
the higher hit probability to maintain a minimal
number of NMR experiments.

While corporate libraries are screened as mix-
tures in traditional HTS assays (Schriemer and
Hindsgaul, 1998; Appel et al., 1999; Pratt Steven
et al., 2004), the use of mixtures has not achieved
wide-spread acceptance because of a continuing
improvement in throughput from miniaturization
and automation which diminishes any perceived
advantage of mixtures (Dove and Marshall, 1999;
Smith, 2002). Concerns about increases in false
positives and increases in total organic concen-
trations combined with practical challenges in
designing chemical libraries and the need to
deconvolute hits further limits the inherent value
of mixtures in HTS (Glick et al., 2003; Schriemer
and Hindsgaul, 1998; Pratt Steven et al., 2004;
Glick et al., 2004; Brown et al., 2000; Brown and
Martin, 1997). Nevertheless, the analysis of OMS
in the context of NMR-based screens is also
applicable to HTS assays. Our analysis of OMS
clearly indicates that a significant improvement in
efficiency on the order of 7–10 fold can be obtained
compared to screening the library as singletons.
While deconvolution limits the total gain that can
be obtained from screening mixtures, a significant
advantage is still achieved.

Conditions where deconvolution of mixtures should
be avoided

Our analysis makes it clear that larger mixture
sizes can be detrimental to the efficiency of the
NMR screen due to the impact of the deconvolu-
tion step (Figure 1c, f). For higher hit rates (>5%),
even small mixture sizes (<5) have a significant
probability of containing a hit, and unlike low hit
rates, the trend does not approximate the non-
deconvolution (N/n) condition. As a result, a large
improvement in efficiency is obtained by using
smaller mixture sizes that avoids deconvolution
except for the extreme case of a mixture size of
one. Thus, while our analysis of OMS predicts a
reasonable choice of a mixture size of 5 com-
pounds for NMR screens with high hit rates, the
analysis also indicates that the efficiency of the
screen improves dramatically if deconvolution can
be completely avoided even if a smaller mixture
sizes (<5) are employed. Also, smaller mixture
sizes tend to be more readily achievable when
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factors such as solubility, reactivity, chemical
diversity and spectral overlap are considered.

Additionally, as the size of the mixture
increases the total number of NMR experiments
required to screen the library asymptotically
approaches N+N/n. This occurs at relatively small
mixture sizes for the larger hit rates, and quickly
exceeds the total number of NMR experiments (N)
required if the compounds were simply screened as
singletons. Obviously, these additional experi-
ments would negatively impact the cost of the
assay by a needless increase in instrument time,
analysis time, and protein material and should be
avoided. High hit rates result in the probability of
a hit being present in any given mixture to rapidly
approach unity, completely negating any value in
using mixtures that requires deconvolution.

Hit rates that are observed in traditional HTS
screens of large random compound libraries are
typically £ 0.5% (Dove and Marshall, 1999). This
implies that screening HTS assays would be more
efficient by using mixture sizes in the range of
15–20 compounds even when deconvolution is
required. Conversely, chemical libraries screened
by NMR have a high likelihood of having hit rates
>5%. First, NMR is increasingly using small
directed libraries with increased drug-like charac-
teristics and a higher propensity to bind a protein
because of the limited throughput of NMR screens
compared to traditional HTS (Fejzo et al., 1999;
Johnson et al., 2003; Lepre et al., 2002; Moore
et al., 2004). Second, NMR screens tend to be
more sensitive than traditional HTS where
observing KD’s in the 100 lM to mM range are
common (Hajduk and Burns, 2002). Finally,
NMR-based assays are also increasingly being
used as secondary assays to confirm hits identified
from HTS (Hajduk and Burns, 2002; Jahnke and
Widmer, 2004). In this context, the expected hit
rate would be very high when using these enriched
compound libraries where it is theoretically pos-
sible to approach 100%. In practice, the hit rates
tend to be significantly below 100% due to a large
number of undesirable mechanisms that led to an
observed activity in a biological assay that does
not involve a specific protein-ligand interaction
(McGovern et al., 2002; McGovern et al., 2003;
Seidler et al., 2003; Rishton, 1997). Nevertheless,
the hit rate is still expected to be significantly lar-
ger than the random hit rate of 0.1–0.5%. Our
analysis of OMS indicates that under conditions of

high hit rate (>5%) the use of mixtures for NMR-
based screens that require deconvolution is ex-
tremely limited. Nevertheless, as long as the hit
rate is below 29%, the minimal mixture size of 2
compounds will still be more efficient than
screening the library as singletons.

Based on this analysis we have designed a
focused compound library that uses mixtures to
maximize the efficiency of an NMR screen while
avoiding deconvolution. One means to rapidly
identify a protein-ligand interaction is by mea-
suring a change in line-width (T2) (Rossi et al.,
1992; Hajduk et al., 1997b). In this case, decon-
volution is unnecessary if at least one NMR
resonance can be uniquely attributed to each
compound in the mixture. This is routinely and
readily achievable by using mixtures composed of
3–4 compounds (Figure 6). A binding interaction
to the targeted protein can be unambiguously
attributed to one compound in the mixture with-
out the need for deconvolution (Figure 7). This
approach has routinely been applied to a screening
library composed of �300 compounds and 70
mixtures where a hit rate of 7.3% has been
observed. Thus, using this library configuration
only requires 70 NMR experiments to screen the
entire library.

One potential problem with the application of
mixtures is the possibility of false negatives. This
issue may arise if two or more active compounds
are present in the same mixture. As described
previously, NMR screens of directed chemical
libraries tend to yield high hit rates with a corre-
spondingly higher probability of multiple hits
being present in a single mixture (Figure 2). Thus,
false negatives are a particular concern for NMR
screens. The most likely source of a false negative
would be the presence of both a tight and weak
binder in the mixture, where the tight binder
completely displaces any observable interactions
of the weak binder with the protein. This is not an
issue if multiple binders are present with compa-
rable binding affinities. Tight binders with KD’s
£ �10 nM would efficiently displace weaker lM-
mM binders given our NMR sample conditions
and result in false negatives. While the situation is
unavoidable, it is not detrimental to the value of
the screen. In general, observing tight binding
compounds with KD’s £ �10 nM are relatively
rare events in the early stages of drug discovery
where NMR screens are commonly utilized.
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Correspondingly, the occurrence of a false nega-
tive will have a low probability. Conversely, in
optimized compound libraries where tight binding
ligands may be more common, the lose of identi-
fying a significantly weaker ligand would pre-
sumably be inconsequential to the success of the
project since the focus would be on identifying the
tight binding ligands. In fact, this is the general
situation where observing a tight binding ligand at
the expensive of a weaker ligand would not be
perceived as detrimental since the tight binding
ligand generally has inherently more value to the
project.

The problems with mixtures and deconvolution
at this high of a hit rate can be further illustrated
by conceptionally screening our small directed
library as mixtures of 10 compounds. The initial
number of experiments would be decreased by
57% (30 experiments) but probability predicts that
16 of these experiments would exhibit a positive hit
requiring 160 deconvolution experiments for a
total of 190 experiments. The result is an
additional 120 NMR experiments with a corre-
sponding �2.7 decrease in the efficiency of the
NMR-based assay by screening the library at a
higher mixture size that requires deconvolution. Of
course, this is still more beneficial than screening
the library under the extremely inefficient condi-
tion of singletons, which would require �300
NMR experiments.

Situations where deconvolution improves efficiency

For a given mixture size, it is always more efficient
to screen a chemical library by NMR that avoids
the need for deconvolution. Nevertheless, as
apparent by the plots in Figure 1, there are
numerous situations where a larger mixture size
(n2) that requires deconvolution is more efficient
than a smaller mixture size (n1) that avoids
deconvolution. An extreme example is a mixture
size of one, where the vast majority of mixture
sizes and hit rate combinations will always be
more efficient. In effect, this scenario is the direct
opposite of the situation observed for high hit
rates, where it is more advantageous to avoid
deconvolution. The major factor that contributes
to this scenario is the number of required decon-
volution steps which directly depends on the
probability of identifying a hit in a mixture
(Equation. 3). Since this probability increases

proportionally with both an increase in mixture
size and an increase in hit rate, any advantage of
screening with a larger mixture size is eventually
lost for hit rates >5%. In general, hit rates for
traditional HTS assays tend to be significantly less
than 5% (Dove and Marshall, 1999) implying that
larger mixture sizes that require deconvolution are
typically more efficient for traditional HTS assays
compared to smaller ( £ 5) mixture sizes that avoid
deconvolution. Again, this is the opposite obser-
vation for larger hit rates where it will never be
advantageous to screen a mixture that requires
deconvolution compared to mixtures that avoid
deconvolution. NMR-based assays that are
screening directed SHAPE-like libraries or con-
firming HTS hits will maximize efficiency by using
smaller mixture sizes that avoids deconvolution.

Strategic pooling of compounds is a common
method that attempts to avoid the need to
deconvolute mixtures (Devlin et al., 1996). Each
compound in the library is screened twice where a
compound is only identified as a hit if both mix-
tures containing the same compound exhibits
activity. The unambiguous assignment of activity
to a specific compound is achieved by designing
sets of mixtures where only a single compound is
present in two pairs of mixtures. The success of this
approach is based on the assumption that the low
hit rate in the screen effectively eliminates the
occurrence of multiple active compounds being
present in the same mixture. Also, the low hit rate
results in a low number of active mixtures that
minimizes serendipitous overlap between multiple
mixtures. As an example, consider the two sets
of mixtures A1(a1,a2,a3,a4), B1(b1,b2,b3,b4),
A2(a1,b1,c1,d1) and B2(a2,b2,c2,d2) where each
compound as required is grouped into two unique
sets of compounds. If all four mixtures are identi-
fied as containing an active compound, it will not
be possible to unambiguously assign the active
compounds without deconvolution of at least one
of the mixtures. This problem occurs because
mixtures A1 and B1 have a compound present in
both mixtures A2 and B2, but only two of the four
overlapping compounds (a1,b1,a2,b2) present in
the two sets of mixtures are active.

Assuming the likelihood of serendipitous
overlap and multiple hits per mixture is essentially
zero for low hit rates, the effective efficiency of
strategic pooling is �(2N/n). Based on our analysis
of OMS, strategic pooling only becomes more
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efficient than standard deconvolution methods
when:

1

n
< P ð6Þ

The probability (P) of observing a hit in mixture
(n) will scale with increasing mixture size and hit
rate, implying that the relative efficiency of stra-
tegic pooling improves with larger mixture sizes
and larger hit rates. This is apparent in Figures 1a
and 1f where the curve for strategic pooling is
plotted together with the standard deconvolution
curves. For a given mixture size at low hit rates
( £0.5%), standard deconvolution is always more
efficient than strategic pooling. This is also con-
sistent with the previous observation that standard
deconvolution closely follows the non-deconvola-
tion situation (N/n) at low hit rates. Interestingly,
at higher hit rates the efficiency of strategic pooling
is effectively equivalent to the standard deconvo-
lution approach. This is apparent in figures 1c-f
where the strategic pooling curve nearly passes
through the OMS points in the standard decon-
volution curves. At all hit rates, strategic pooling
only becomes more efficient than standard decon-
volution when mixture sizes greater than the
predicted OMS are used (Figure 1). But at higher
hit rates and larger mixture sizes, the strategic
pooling approach fails because the probability of
finding multiple active compounds in a single
mixture and the occurrence of pairs of mixtures
with overlapping compounds is non-zero. This is
clearly evident in Figure 2 where the probability of
a mixture containing more than one active com-
pound becomes the common event at higher hit
rates. As a result, the strategic pooling approach
would not be an advantage for NMR-based
screens that are being used as a secondary assay to
confirm active compounds from an HTS screen or
utilizing a SHAPES-like library. Strategic pooling
is also a limited utility in an HTS screen.

There are also some practical considerations in
the routine application of a strategic pooling
approach for larger mixture sizes (Glick et al.,
2003). Inherent to the methodology is the
requirement of designing (2N/n) mixtures from a
library of N compounds where each mixture has a
unique combination of compounds. The mixture
design also needs to consider issues such as com-
pound reactivity, solubility and diversity
(Schriemer and Hindsgaul, 1998; Hann et al.,

1999; Brown and Martin, 1997; Brown et al.,
2000). As mixture size and library size increase,
finding two sets of mixtures that adheres to these
requirements will increase dramatically in com-
plexity where a practical solution may be intrac-
table (Brown and Martin, 1997; Brown et al.,
2000).

Bucket-sort approach to deconvolution

One mechanism to reduce the impact of the
deconvolution step is to use a tiered approach to
screening. A large mixture size (>20) is initially
screened, where mixtures with an identified hit are
sub-divided into a second set of smaller mixtures
( £10) for further screening. Compounds from the
smaller mixtures with an identified hit are then
screened as singletons. Effectively the bucket-sort
method results in a two-step deconvolution pro-
cess (Equation. 4). Figure 4 illustrates the dra-
matic decrease in the total number of experiments
required for a mixture size of 100 compounds if the
deconvolution step is first screened as mixtures of
5 compounds instead of singletons. The bucket-
sort approach clearly results in a significant
improvement in efficiency (�4–5) compared to
standard deconvolutions and �2 fold improve-
ment compared to the OMS.

Determining the optimal mixture size for the
second set of mixtures is conceptionally similar to
determining OMS for the simple deconvolution
process (Figure 5). A major difference is the fact
that the probability of identifying a hit in the
mixture is not determined by the overall hit rate
for the compound library (HR1). The bucket-sort
approach results in an increase in the effective hit
rate (HR2) for the second set of mixtures since the
first screen simply removes a set of inactive com-
pounds while moving all the active compounds
forward in the assay. The impact is a relatively
narrow OMS window of 6–12 compounds that is
only meaningful for hit rates £5%. For higher hit
rates, the OMS reduces to a range of 1–3 com-
pounds per mixture. Also, the impact on the total
efficiency of the NMR screen is relatively flat for
low hit rates. For a hit rate of 1%, there is a
minimal difference between mixture sizes 5
through 25. In essence, the impact of the bucket-
sort approach is not strongly influenced by the
OMS for the second set of mixtures at low hit
rates. It appears the majority of the gain in
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efficiency simply arises from applying two sets of
mixtures to the deconvolution process. Figure 4
clearly illustrates this point, a mixture size of 5 and
10 compounds is used for the second mixture. At
hit rates £ 5%, there are only minor differences in
the efficiency of the bucket-sort approach using the
two different mixtures sizes compared to the sig-
nificant improvement over both standard decon-
volution and OMS. But, as the hit rate rises, using
a less than optimized second mixture size results in
a dramatic decrease in the efficiency of the bucket-
sort approach where the method quickly becomes
less efficient than a standard deconvolution
approach. Since the OMS reduces to 1–3 com-
pounds per mixture at higher hit rates, the bucket
sort approach effectively reduces to a standard
deconvolution method.

The application of the bucket-sort approach to
deconvolution suggests that it may be feasible for
an NMR-based assay to screen a 200,000 com-
pound library in �2–4 weeks assuming a random
library with a low hit rate ( £ 0.5%) and typical
NMR acquisition times. While the throughput still
positions the efficiency of an NMR-based screen at
the lower end of a traditional HTS assay, the
added value of a confirmed protein-ligand binding
interaction with a diminished number of false
positives more than compensates for the lower
throughput. In fact, current trends indicate that
the preferred mode of executing an HTS assay is to
screen smaller libraries that have been designed to
contain compounds with improved drug-like
characteristics and maximum structural diversity
(Viswanadhan et al., 2002; Matter et al., 2001; Xu
and Stevenson, 2000; Kubinyi, 2003; Jelic et al.,
2003; Xue and Bajorath, 2000; Lewis et al., 2000;
Willett, 2000; Spellmeyer and Grootenhuis, 1999;
Gorse and Lahana, 2000). In principal, these
smaller chemical libraries would be more amena-
ble to an NMR-based assay using a bucket-sort
approach.

While the bucket-sort approach represents a
significant improvement in efficiency for NMR-
based screens, it also adds layers of complexity
requiring multiple interrelated compound libraries
comprising different mixture sizes and compound
combinations with corresponding compatibility
issues. The bucket-sort method for large mixture
sizes (‡50) yields the best efficiency results in
regards to the total number of required experi-
ments, and thus should be favored for screening

large libraries, but may represent serious practical
challenges in identifying appropriate mixtures.
Clearly, identifying a few thousand mixtures
composed of 50–100 compounds that are: (i) non-
reactive, (ii) stable, (iii) don’t aggregate or form
micelle-like structures, (iv) maintain a reasonable
solubility detectable by NMR, (v) are structurally
diverse and (vi) don’t negatively impact the sta-
bility of proteins is an extremely challenging en-
deavor. Most of these factors are not reliably or
readily predictable from the simple knowledge of
the compounds structure (Cheng and Merz, 2003;
Chen et al., 2002; Taskinen and Yliruusi, 2003;
Hann et al., 1999). Additionally, experimental
data is very limited especially given the large
number of novel compounds that comprise most
corporate chemical libraries (Klan and Jindrich,
2000). In practice, confirming the compatibility of
mixture combinations for small libraries is typi-
cally obtained by trial and error. The alternative is
to assemble best estimates of appropriate com-
pound mixtures and simply ignore or discard
problematic or ‘failed’ mixtures. The expectation is
that the number of failed or problematic mixtures
would represent a small percentage of the entire
library. This is a reasonable assumption when
assembling small mixtures composed of 5–10
compounds, but as the mixture size is increased by
an order of magnitude, problem mixtures may
become more prevalent. Thus, the inherent diffi-
culty in assembling an appropriate chemical
library using large mixtures is the limiting factor in
the application of a bucket-sort NMR screening
approach.

Conclusion

A model based on the application of the hyper-
geometric distribution function for predicting the
optimal mixture size for NMR-based screens was
presented. The model indicates that OMS is
directly dependent on the hit rate, where OMS
decreases as the hit rate is increased. An OMS in
the range of 15–20 compounds per mixture is
predicted for typical random chemical libraries
with hit rates of 0.35–0.2%. NMR-based assays are
increasingly being used to screen small directed or
focused compound libraries or as secondary assays
to confirm HTS chemical leads that exhibit sig-
nificantly higher hit-rates (>5%). For these
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expected higher hit rates where the absolute hit
rate is not known a priori, a mixture size of 5
compounds for an NMR screen is a reasonable
target. But, our analysis also indicates that
screening small directed libraries that require de-
convolution of mixtures is extremely inefficient
relative to screening smaller mixture sizes that
avoid deconvolution. Thus, the efficiency of the
NMR screen will be improved significantly by
using mixture sizes composed of 3–4 compounds
that do not require deconvolution compared to a
mixture size of 5 compounds that requires decon-
volution. Also, smaller mixture sizes tend to be
more practically achievable when factors such as
solubility, structural diversity, reactivity and
spectral overlap are considered.

The opposite condition exists at low hit rates
( £0.5%), where there are numerous situations
where an improvement in efficiency can be
achieved by using larger mixtures sizes that require
deconvolution. A bucket-sort approach that min-
imizes the impact of deconvolution using a tiered
approach results in a dramatic improvement in
efficiency relative to both OMS and single decon-
volution step, but incurs the practical challenge of
needing to assemble a large chemical library
comprising mixtures of 50–100 compounds that
are valuable to a screening effort. While this
analysis of OMS was done in the context of NMR
screening, the results presented herein are univer-
sally applicable to all types of screening methods
including mass spectrometry and biological assays.
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